Wire, mesh, and fiber electrodes for paper-based electroanalytical devices.
نویسندگان
چکیده
Here, we report the use of microwire and mesh working electrodes in paper analytical devices fabricated by origami paper folding (oPADs). The important new result is that Au wires and carbon fibers having diameters ranging from micrometers to tens of micrometers can be incorporated into oPADs and that their electrochemical characteristics are consistent with the results of finite element simulations. These electrodes are fully compatible with both hollow channels and paper channels filled with cellulose fibers, and they are easier to incorporate than typical screen-printed carbon electrodes. The results also demonstrate that the Au electrodes can be cleaned prior to device fabrication using aggressive treatments and that they can be easily surface modified using standard thiol-based chemistry.
منابع مشابه
Electroanalytical devices with pins and thread.
This work describes the adaptive use of conventional stainless steel pins-used in unmodified form or coated with carbon paste-as working, counter, and quasi-reference electrodes in electrochemical devices fabricated using cotton thread or embossed omniphobic R(F) paper to contain the electrolyte and sample. For some applications, these pin electrodes may be easier to modify and use than printed...
متن کاملCarbon Nanotube Paper-Based Electroanalytical Devices
Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT) array, grown using chemical vapor deposition (CVD), was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT) sheet to a thin CNT sheet. A...
متن کاملFabrication and Characterization of Microwire Electrochemical Paper-based Analytical Devices with Quasi-steady Flow
A new approach for incorporating metallic microwire electrodes into simple, self-pumping paperbased microfluidic devices is presented. The low resistance wire electrodes improve electrochemical response relative to screen-printed carbon electrodes. Here, for the first time, microwire electrodes have been incorporated into a self-pumping quasi-steady state flow paper-based microfluidic device ca...
متن کاملFirst Princiles Study of the Electron Transport Properties of Buthane-dithiol Nano-Molecular Wire
We report a first-principles study of electrical transport in a single molecular conductor consisting of a buthane-dithiol sandwiched between two Au (100) electrodes. We show that the current was increased by increasing of the external voltage biases. The projected density of states (PDOS) and transmission coefficients (T(E)) under various external voltage biases are analyzed, and it suggests t...
متن کاملFiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage.
Recently, there has been great interest in flexible and wearable energy devices for applications in flexible and stretchable electronics. Even though future developments are moving toward thinner, lighter, and cheaper solutions, many existing energy-harvesting and storage devices are still too bulky and heavy for intended applications. For example, high-efficiency dye-sensitized solar cells (DS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 86 7 شماره
صفحات -
تاریخ انتشار 2014